Multi-label classfication for Reuters text data

Project Report for Deep Learning 2017 Group "Lazy Tigers" Ari Siitonen, Aaro Salosensaari, Ioanna Bouri University of Helsinki December 14, 2017

Contents of the presentation

- 1. Group work process
- 2. Dataset handling
- 3. Notes about models and algorithms (CNNs, LSTMs, embeddings)
- 4. Final Model and Results
- Objective: 15 min presentation

Group work

Brief summary of our process

- Meetings 1-2 per week
- Collaboration on dataset preprocessing methods, metrics, etc.
- + Each member experimented with different models on their own
- Slack: Discussion and sharing Python code

Dataset handling

Reuters newswire dataset

Dataset handling + Training

- ~157k samples, N_CLASSES = 126
- Dataset is very large, what to do about that?
- Zipped XMLs were processed into one large HDF5 file
- HDF5 file was accessed in chunks for training:
 - Chunk of 1000 samples: training / validation split 0.05
 - One chunk of 1000 samples not used for training and retained as a test set.

Text data preprocessing

- Tokenizing
- Word filtering
 - NTLK Stopwords
 - Numbers etc --->
- 2 x headline
- Max 300 words / article
- GloVe Embeddings
 - 131393 / 238172 found
- Word2vec (Google-News)
 - 72441/238172 found

```
def tokenize(text, size=300):
   min length = 1
   text = re.sub(r"[^A-Za-z0-9^,!.\/'+-=]", " ", text)
   text = re.sub(r"what's", "what is ", text)
   text = re.sub(r"\'s", " ", text)
   text = re.sub(r"\'ve", " have ", text)
   text = re.sub(r"can't", "cannot ", text)
   text = re.sub(r"n't", " not ", text)
   text = re.sub(r"i'm", "i am ", text)
   text = re.sub(r"\'re", " are ", text)
   text = re.sub(r"\'d". " would ". text)
   text = re.sub(r"\'ll", " will ", text)
   text = re.sub(r",", "", text)
   text = re.sub(r"\.",
                                text)
   text = re.sub(r"!", " !
                               ", text
   text = re.sub(r'')/".
                              , text)
   text = re.sub(r"\^",
                                , text
   text = re.sub(r'' + ",
                                ", text)
   text = re.sub(r'' - '',
                               ", text)
   text = re.sub(r"\=",
                          " = ", text)
   text = re.sub(r""", " ", text)
   text = re.sub(r"(\d+)(k)", r"\g<1>000", text)
   text = re.sub(r":", " : ", text)
   text = re.sub(r" e g ", " eg ", text)
   text = re.sub(r" b g ", " bg ", text)
   text = re.sub(r" u s ", " american ", text)
   text = re.sub(r"\0s", "0", text)
   text = re.sub(r" 9 11 ", "911", text)
   text = re.sub(r"e - mail", "email", text)
   text = re.sub(r"j k", "jk", text)
   text = re.sub(r"\s{2,}", " ", text)
   words = map(lambda word: word.lower(), word_tokenize(text));
   words = [word for word in words
                   if word not in cachedStopWords]
   #
                    words))):
   tokens = words
  filtered_tokens = list(filter(lambda token: re.sub(r"[A-Za-z0-9^,1:\/'+-=]", '', token),tokens));
filtered_tokens = list(filter(lambda token: re.sub('[0-9]\-[\,\\/\/\++', '', token),filtered_tokens));
filtered_tokens = list(filter(lambda token: re.sub('[2]s,1![(])]:"[\tickens],tiltered_tokens));
   filtered_tokens = list(filter(lambda token: len(token)>=min_length ,filtered_tokens))
   #filtered tokens = list(filter(lambda text: re.sub(r"n't", " not ", text) and re.sub(r",", '', text) and
   #filtered_tokens = filtered_tokens[:size]
   filtered_tokens = list(filter(None and '-', filtered_tokens))
```

return filtered_tokens

Models and algorithms

Embeddings, CNNs, LSTMs

Activation & Loss function

- In all our models:
- Final layer: Dense layer with N_CLASSES = 126 outputs
- Sigmoid activation (each label normalized -> [0,1])
 - Probability "is this label present in this data sample"
 - Softmax would assign a probability to each class, but this is multi-label classification
- Binary crossentropy
 - Mean of per-label binary crossentropy

Network models we tried

- With & without embedding
 - (Glove and Word2vec Gensim)
- MLP, CNN, LSTM
- CNN with varying kernel window size
- LSTM with uni/bidirectional layers
- CNN + LSTM combo
- With/without class weights
- Best models: Relatively simple CNNs with embeddings
- The final model: CNN model with Gensim embedding

Optimization

- Optimizers' ranking:
 - RMSProp
 - Nadam
 - Adagrad
 - Adam
 - Adadelta
 - SGD
 - Adamax
- All optimizers had a very slight difference in accuracy
- RMSprop usually seemed to perform the best

- Various batch sizes and epoch lengths
- Final setup:
 - Batch size 256 samples
 - 4 epochs per chunk
 - \circ 150 chunks = 600 epochs

Results

- The Final Model
- + Brief look at intermediate models

The Final Model We Submitted

CNN+GlobalMaxPooling + Gensim

<pre>batch_size=256 epochs = 4 x_shape = 300 y_shape = 126 N_CLASSES = 126</pre>
<pre>sequence_input = Input(shape=(x_shape,), dtype='int32') embedded_sequences = embedding_layer2(sequence_input) x = Dropout(0.3)(embedded_sequences) x = ConvlD(300, 10, activation='relu')(x) x = MaxPooling1D(5)(x) x = ConvlD(100, 8, activation='relu')(x) x = GlobalMaxPooling1D()(x) x = Dropout(0.2)(x) x = Dense(N_CLASSES)(x)</pre>
<pre>ma_cnn4_preds = Activation('sigmoid')(x) model = Model(inputs=sequence_input, outputs=ma_cnn4_preds) print(model.summary()) model.compile(optimizer='RMSprop',</pre>

Layer (type)	Output	Shape	Param #		
input_5 (InputLayer)	(None,	300)	0		
embedding_3 (Embedding)	(None,	300, 300)	71451900		
dropout_7 (Dropout)	(None,	300, 300)	0		
convld_7 (ConvlD)	(None,	291, 300)	900300		
<pre>max_pooling1d_5 (MaxPooling1</pre>	(None,	58, 300)	0		
convld_8 (ConvlD)	(None,	51, 100)	240100		
global_max_pooling1d_3 (Glob	(None,	100)	0		
dropout_8 (Dropout)	(None,	100)	0		
dense_5 (Dense)	(None,	126)	12726		
activation_3 (Activation)	(None,	126)	0		
Total params: 72,605,026 Trainable params: 1,153,126 Non-trainable params: 71,451,900					

None

Test set metrics:

```
test set metrics:
exact match accuracy
0.695
precision (true pos scores / all pred pos)
0.932559010865
recall (true pos scores / all real pos)
0.829666666667
f1
0.878109013935
jaccard
0.851763492063
hamming loss
0.0054841269841269845
Confusion matrix:
[[122820 180]
     511 2489]]
 T
```


F1 score + Loss function during training (train set + 0.05 split validation set)

Test set metrics for some intermediate models

- 2-layer (CNN + MaxPooling1D), with GloVe
 - F1 0.8664, precision 0.8905, recall 0.8436
- Same as ^ + Inverse class weights
 - F1 0.8062, precision 0.8480, recall 0.7683
- CNN + MaxPooling1D + CNN + GlobalMaxPool, with GloVe
 - F1 0.8671, precision 0.9365, recall 0.8073
- Same as ^ but with word2vec (= Final Model)
 - F1 0.8781, precision 0.9325, recall 0.8296
 - 0.695 exact match accuracy!

If we still have time left -> more plots

Prediction performance of the Final Model

How many of all predicted ones (x) were predicted correctly (o)?

How many of all predicted zeros (x) were predicted correctly (o)?

FALSE POSITIVES: . false predicted 1, x real 0

How many of the zeros in test set (x) were mis-labeled as ones (o)?

How many of the ones in test set (x) were mis-labeled as zeros (o)?

Thank you!

Appendix: Additional model definitions + plots

Note:

- We could not fit all of our experiments in a notebook / pdf with max length 20 pages
- So they are included here for reference
- NOT covered in the presentation
- TODO: Screenshots of everything that wasn't in the notebook we submitted

CNN+Inverse weights

fl score 0.815966430664 (1000, 126)test set metrics: exact match accuracy 0.534 precision (true pos scores / all pred pos) 0.848050036792 recall (true pos scores / all real pos) 0.76833333333333 f1 0.80622595313 jaccard 0.754646608947 hamming loss 0.008793650793650794 Confusion matrix: [[122587 413] 1 695 230511 (1000, 126)


```
sequence input = Input(shape=(x shape,), dtype='int32')
embedded sequences = embedding layer(sequence input)
x = Dropout(0.3) (embedded sequences)
x = Conv1D(300, 8, activation='relu')(x)
x = MaxPooling1D(5)(x)
x = Conv1D(100, 5, activation='relu')(x)
x = MaxPooling1D(5)(x)
x = Flatten()(x)
x = Dropout(0.2)(x)
x = Dense(128, activation='relu')(x)
preds = Dense(y shape, activation='sigmoid')(x)
model = Model(sequence input, preds)
model.summary()
model.compile(loss='binary crossentropy',
              optimizer='RMSprop',
              metrics=[f1 score])
```

During training:

```
class_sums1 = y_data.sum(axis=0)
class_sums1 = np.where(class_sums1==0,0.001, class_sums1)
inverse_frequencies = (y_data.sum()/class_sums1)
class_weight = dict((i, round(inverse_freq)) for i, inverse_freq in enumerate(inverse_frequencies))
```

CNN + MaxPool1d

```
f1 score 0.873879217148
(1000, 126)
test set metrics:
exact match accuracy
0.679
precision (true pos scores / all pred pos)
0.936581593194
recall (true pos scores / all real pos)
0.8073333333333
f1
0.867167919799
jaccard
0.838249603175
hamming loss
0.0058888888888888888888
Confusion matrix:
[[122836
            164]
     578
           242211
```


(Model definition same as previous slide, but without the class weights)

CNN+LSTM

CNN + LSTM model definition

MLP

